Motivation
Transposing both analyzability and self-organized phenomena from physics (instead of living systems) to computer networking.

Approach
Online simulation of physical forces in a distributed physical virtual machine.

From Forces to Networking Services

<table>
<thead>
<tr>
<th>Attractive forces</th>
<th>Routing</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Gravity, Electrostatics)</td>
<td>Content-centric network</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Repulsive forces</th>
<th>Load balancing</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Electrostatics)</td>
<td></td>
</tr>
</tbody>
</table>

Metaphor
- Particle: Packet
- (Sub) space: Network node
- Force: Execution rule
- Time: Scheduled transmission event

Current Implementation
Event system with stochastic transmission. Scheduling adheres to Coulomb forces.

Routing and Load Balancing
A cloud of protons announcing the destination creates a pit. Search electrons (packets) follow the gradient.

Future
- Integration of energy, entropy and mass
- Extension to other types of forces
- Study of the behaviour of particles subject to competitive forces
- Design of a generic programming language for artificial physics

Contact: m.monti@unibas.ch

1) http://cn.cs.unibas.ch
2) http://dspcola.iet.unipi.it